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SUMMARY

A transformation theory of systems of partial differential
equations is developed which allows the construction of classes of
pressure—density relations depending on arbitrarily many parameters
for which the equations governing the flow can be transformed into an
essentially simpler form, namely, into the Cauchy-Riemann equations in
the subsonic region, into the system corresponding to the wave equation
in the supersonic case, and finally into that form corresponding to the
Tricomi equation in the transonic region. The transition from one
system of differential equations to the other is always such that only
the solving of ordinary differential equations is required in order to
£ind solutions of the more complicated system from correspondlng
solutions of the simpler one.

INTRODUCTION

It has already been observed by Chaplygin (reference 1) that in
the case of a pressure-density relation of the form p = _.%.+ b,a >0

the equations describing a steady irrotational flow in ithe plane can be
reduced to the Cauchy-Riemann differential equations. This is achieved
by transforming the equations into the hodograph plane, that is, the
plane of the velocity components, and using suitable combinations of

the latter as independent variables. Since any pressure—density
relation can, in smaller regions of the variables involved, be approxi—
mated by the foregoing relation, approximation theories can be developed
which make use of the Cauchy-Riemann equations. A series of recent
papers, by Von Kermin, Tsien, Bers, Gelbart, Bartnoff and Lin, follow
this idea (references 2 to 9).

The investigations taken up in this report originated in the
question whether the ldeas developed by the Swedish mathematician
Baecklund, in his transformation theory of partial differential equa—
tions of second order, could, after suitable modifications, be utilized
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Tor the study of the equations of compressible fiuid flow. The funda-—
mental problem of Baecklund was to find all pairs of surfaces I

and X' in an x,y,z—space and an x!,y!,z'-—space, respectively, and a
one-to-one mapping between them such that, for corresponding points,
four given equations

Fi(x,y,z,p,q,x‘,y',z‘,p',q’) =0 (1 = 1,2,3,4) (1)

are satisfied. As usual p and ¢q designate the partial derivatives
of z with respect to x and y and, similarly, p' and q' the
derivatives of z! with respect to x! and y!'. It is clear thati,
for a surface X given, in general no surface X' can be found which
can be mapped onto I in such a way that equations (1) are satisfied.
In order to find the necessary and sufficient conditions for the proper
surface X' and mapping of ¥ onto X' +to exist, the following
operations, according to Baecklund, must be performed (reference 10):

(a) Considering x* and y' as functions of x and y, each of
equations (1) is to be differentiated up to the second order with
respect to the two independent variables.

(b) From the equations thus obtained combined with equations (1),
all guantities 'bearlng a prime are to be eliminated.

In general the elimination result will consist of two partial

. differential equations of the third order in z(x,y). They represent
the conditions on the surface X. If the differentiations of first
order in step (a) combined with equations (1) already allow for the
elimination of the primed quantities, the resulting equation of second °®
order represents the conditions on the surface X sought. Steps (a)
and (b) may also be teken with reversed roles of surfaces %L and 2!
and will lead to one or 'two partial differential equations in 2z' as

a function of x!' and 3°.

These considerations show that equations (1) link solutions of
two, in general, different systems of partial differential equations
with each other. If one system is simpler then the other, assertions
about the solutions of the more difficult system may be derived from
knowledge of the solutions of the simpler one.

The steady irrotational flow of a compressible fluid may be
described by the equations

Uy — Vx = 0
(2)
(pu)x + (pv)y =0

- - e —————— e T tm— e e
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where x and y are Carteslan coordinates in the physical plane
and u and v +the components of the velocity vector. The density p
is to be thought of, according to Bermoulli's law, as a function of the

speed q = Vu2 + v2. The subscripts % and y in system (2) designate
the respective differentiations.

Another description of the flow is obtained by introducing the
potential function ¢ end the stream function V¥ as follows:
Equations (2), considered as integrability conditions, show that there
exist functions @(x,y) and ¥(x,y) such that

u=¢x Du=\l'y
v=¢y . —pv=‘lfx

This leads to the equatlions

Ve = —pf
(3)
qu = p¢:x;

in which the arguments u and v in p are to be replaced by @
and ¢y’ respectively.

Both systems (2) and (3) are nonlinear in the case of compressible
fluid flow because p 1s a variable function of u and v. As was
recognized by Chaplygin, systems (2) and (3) take on essentially simpler
form if the physical plane is replaced by the hodograph plane; that is,
i1f the velocity components u and v are introduced as independent
varigbles instead of x and y. Systems (2) and (3) then become linear.
Each of the systems takes on the form

FE 4Gl e ¢ 4G =0 (1=12) (1)

where & and 1 vrepresent the coordinates x and y in the case of
equations (2) and the potential and stream functions ¢ and ¥ in the
case of equations (3). -
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The coefficients Fi and Gi are definite functions of u and v
and their forms depend on the equation of state adopted. "For an incom—
pressible fluid, equations (4) are identical with -the Cauchy-Riemann
equations.

Very often it is convenient to introduce coordinates other than u
and v in the hodograph plane, for example, polar coordinates, or any
other generalized coordinates s and + comnected with u and v
by a transformation

s = s(u,v)
| .
t = t(u,v) |
or
u = u(s,t) ]
' [ ‘ (5a)
v =v(s,t) |

where both transformation (5) and its inverse, transformation (5a), are
continuously differentisble. If such a transformation is applied to
equations (4), a system .

o1
T

18 % g g, * 5 n, + g, =0 (i =1,2) (6)

_t.

of the same form as system (4) is obtained with new coefficients flic
and g%: which are now to be written as functions of the new coordi—-

nates s and t.

Following the ideas of Baecklund, the following question may be
raised: Is it possible to interrelate two given systems of differential
equations of the form of system (6) by a transformation of the Baecklund

type? As an analogue to equations (1), a transformation of the
"Baecklund type" will be defined here as given by a system of equations

of the form

Gi(S,6,E,M08 584 Mgo NS b e o se T rse Tran’, :"]'tg) =0 (7)

(i =1,2, . . .,6)
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A solution of system (7) is represented by two pairs of functions

It

= &(s,%) | g*

e
i

Et(st,t?) : L
(8)

n(s,t) nt = nt(st,tr)

=
0

having as independent variables s,t and s?,t', respectively, and a
one—to—one mepping between the s,t— and s!',t'-plane such that at corre—
sponding points all equations (7) are satisfied.

If a geometrical interpretation is desired, two spaces P and P!,
each of four dimensions, with the coordinates (s,t,&,7)
and (s',t',t',n'), respectively, have to be introduced. A pair of
functions ¢ = t(s,t) and n = y(s,t) represents a two—dimensional
surface 5 in P and correspondingly a pailr of functions &% = g¥(s?,tt)
and 7t = n*(s*,t?) represents a surface I!' in P!. To solve
system (7) means to find all pairs of surfaces & and X' and a
one—to-one mapping between them such that the quantities character—
izing their tangent planes at corresponding points satisfy
relations (7).

That the cholce of six equations in system (7) is natural follows
from the fact that if s and t are conslidered as independent vari—
ables and &,n,&',n',s', and t' as dependent variables, the number of
equations coincides with the number of unknown functions.

Again, as in the case of equations (1), the following important
question presents itself: What surfaces £ (or X!) belong to a solu—
tion of system (T7)? It is to be expected that necessary and sufficient
conditions may be found from operations corresponding to those applied
to equations (1), that is,

(2) Considering s! and +!' as functions of s and %, each of
equations (7) is to be differentiated with respect to s and + up to
the second order.

(b) A1l quantitlies bearing a prime are to be eliminated from the
equations thus obtained combined with equations (7).

The result of the elimination will in general consist of four
partial differential equations of third order. In particular cases a
differentiation of first order in operation (a) suffices to yleld
necessary and sufficient conditions on = so that =t' should exist,
by the elimination of the primed quantities. This is the case with
all Baecklund transformations studied and applied in this report.

e mAmAs e e am o o D e e+ & o e —_—— - - e e o
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The essential point in the preceding consideration is again the
fact that, by a Baecklund transformation of the type of system (7), two,
in general, different systems of partial differential equations con—
taining two independent and two dependent variables are interconmected.

For the purposes of this investigation it is not necessary to
study the most general type of Baecklund transformation such as
system (7). Since the interest is directed to linear systems of the
type of system (6), it is sufficient to conmsider only such equations (7)
which are linear and homogeneous in the quantities ¢,n,t', and n* eand
their derivatives of first order. The further more restrictive assump—
tion will be made that two of equations (7) describe a one—to—one
mapping of a domain of the s,t—plane onto a domain of the s?,t'—plane
or, in other words, represent a transformation of the independent vari—

ables given by

st = f(s,t) )
9

tt g(s,t)

Since transformations of any quantities resulting from such a
coordinate transformation can easily be handled, there is no essential
loss of generality if the assumption is henceforth made that equa— .
tions (9) reduce to

st =8 . o
\ (10)
\ !

°

System (7) can then be replaced by a system of only four equations,
linear and homogeneous in ¢,7,t*, and n', and their derivatives of
first order with respect to s and +. The coefficients may be arbl—
trary functions of s and t satisfying the condition that they be
twice continuously differentisble. 0Only the additional conditlon, that
the four equations can be solved for the four first partial derivatives
of & and 17 and also for the corresponding derivatives of E?
and 7', is assumed. - Equations (7) can therefore be brought into the

form

+



NACA TN 2065 . 7

v o2l woln wely aolo 4ol 1 1., .
B g TP B T N FTI B r T N F AT E P Ay e g
1 1 1 1 1 1 1 1
t = + 1 t
R T e ol T e e R

p(11)

nt = pi £t pg n +‘T§ gt + Tg n, + a§ £+ ag n+ 7? £t +

2 2 2 . 2 2 2 2
Ny =07 g * Mg + O By W+ BT g+ By M+ D) gt + 5 0!

where the coefficients on the right are all functions of s and +t,
and the determinant of the coefficient matrix of equations (11)
containéd in the first four columms on the right is supposed to be
different from zero. )

Equetions (11) can be brought into a simpler form by use of the
matrix calculus notation. Set

1 1 1 1 1 1
foh o B B
1 D 1 o | %
A= . B = C = )
2 2 2 2 o 5
Y % By By CERL
1 1 sl 5l
T 1 %2 Ui ‘%
R = D= S =
2 2 2 2 o 2
5 5
Py P 1 2 9 %
1 1 11
1 T2 ® %
T = W=
T2 T2 032 (.02
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Further designate the column matrix (%) by ¢ and <%,) by €. If

differentlatlon of a matrix means, as usual, dlfferentiation of each of
its elements, equations (11) can then be written in the simple form

g 'RCS + Tty + Ag + Ct?

(12)

grt S€, + Wt + B + D¢*

A systematic study will now be made of the possibilities of transforming
systems of equations. of the form of system (6) into each other by trans—
formations of the type described by equations (12), and applications to
compressible fluid flow will be made.- :

This investigation was conducted at Syracuse University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

.

The author is indebted to Messrs. Helmut Aulbach and Samel
Schechter for valugble assistance.

SYMBOLS

a,b,c canstants

i i.i
Q‘K} k:7k:5k: R .

functions of s and t defined by equations (11)
i .

ol ol,r1,m
¥ ¥ x k

A,B,C,D,R,S,T,W matrices having the previous functions as respective

elements

Fy5Gy functions defined by equations (1) and (T),
respectively

H matrix defined by equation (14)

I unit matrix
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K
k(s),kl(s)
(o)

M

cdnsta.nt matrix

functions defined in theorem 3 (appendix)

mg jorant function used in theorem 1 (appendix)
Mach number

pressure

speed

curvilinear coordinates in hodograph plane

‘velocity components

Cartesian coordinates in physical plane

inverse of matrix W
"adjoint" of matrix W
constants

exponent in pressure—density relation

elements of the matrix H

functions defined by equations (35a)
velocity potential

stream function

density

:E;unction defined by equation (87)
variable defined by equation (80)

angle between velocity vector and x—axis

auxiliary varisble defined by relation (Tk)

column vectors <§>, <§]:), respectively

function defined by equations (49)
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w*(s*) function defined by formmla (61)

T(M) trace of matrix M

) 50 5005 functions of the form given by equation (111) which
, gpproximate

a)*l,a)*2 functions which approximate ¥

s as subscript, partial derivative with respect to s;

any other varisble used as subscript, partial
derivative with respect to that variable

ANATYSIS
1. Baecklund Transformations Connecting Two Systems of

Partial-Differential Equations of First Order

A steady irrotational flow in the plane is described by a system
of differential equations of the form of system (6). A study of the
application of Baecklund transformations to such systems must start
with answering the following fundamental question: Which of the
Baecklund transformations of the form of equations (12) transform two
systems of partial differential equations of the form of system (6)
into each other? A complete answer will be given in this section, and
it will eppear in the form of a system of partial differential equa—
tions in the matrix coefficients in equations (12).

In order to simplify the writing, system (6) will always be
written in a matrix form. After setting

el gl 1 g1
1 2 gl 82
2 f2 2

o5 & gg

system (6) may be written in the form

Flg + Gty =0 - (13)
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(Henceforth, a system of equations written in matrix form as a single
relation will also be referred to as an equation.) Without loss of
generality it may be assumed that the determinant of F is never zero.
As can be easily seen, this means that a line t = Caonstant can never
be touched by a characteristic curve of equation (13). This can always
be achieved by a sulitable choice of the coordinates s and +.
Equation (13) can now be written in the form

£s = Hy A (1)

where H = -FiG represents a matrix function of s and .

In order to find the conditions § must satisfy if it is to
belong to a solution of system (12), the latter equations must be
differentiated, and the primed quantities eliminated. If the first
equation is differentiated with respect to + and the second with
respect to s, subtraction of the ensuing equations yields

0= SCss + (wl—‘R)gst = Tlyy +
(8s =Ry +B)fs + (Wg — Ty, — Aty + (Bg — AL +

D4t ~ b +(Ds — Gy) ¢ (15)

If, further, the expressions for (' and {'; from equations (12)
are substituted in equation (15), the resultlng equation is

0 = Stgs + (W — R)bgy — Ty, +

(s —Ry + B +-DR—CS)§S+(WS—Tt—A+DT—cw)gt+

(pa-cB + B - Ag) + (e ~ o + Dg — C)tt (16)

If the asswmption is introduced that the coefficient of (! in equa—
tion (16) is identically zero, or

Dg — Cy + DC —CD = 0 (17)

then equation (16) is already free of primed quantities and therefore
represents a condition on {. In general, equation (16) is of second
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order. Since only equations of the form of equation (13) are studied
here, the further assumptions that

W=R
(18)
S=T=0
Bs — Ay + DA— (B = 0 (19)
will be made. Transformation (12) then reduces to
Cls =Wtg + AL + CL*
(20)
E'¢ =Wy +BL +DC°
and equation (16) to i
(W +B+DW)E + (Wg —A—CW)ty =0 (21)

The latter procedure leading to equation (21) may be subordinated
to the derivation of the integrability conditions of a "Mayer—Iie
system" of partial differential equations. (See reference 11.) Indeed,
if € 1is considered as given, then equations (20) represent such a
system for the determination of {'. ‘A Mayer—Lie system expresses all
derivatives of first order of the unknown functions in terms of the
independent and the dependent variables themselves. The principal
theorem of the theory of Mayer—iie systems applied here asserts that,
if equations (17) and (19) are satisfied, equation (21) is not only a
necessary but also a sufficient condition for the existence of a (!
that can be comnected with { by equations (20). It furthermore
asserts that there exists a (' having an arbitrarily preassigned
initial value {'; at a given point- (so,to), and ¢! 1is uniquely
determined by ¢fp. The computation of (' requires the solving of a
system of ordinary differential equations with given initial conditions.

It is now easy to find further conditions on the coefficient of
equations (12) so that also {' will satisfy a system of the form of
equation (13). The roles of the quantities { and {' have to be
reversed. To attain this, equations (20) have first to be solved
for ¢g and {g. The assumption that this 1s possible was introduced
from the beginning and means, evidently, that the determinant of W 1s
nowhere zero or that W has an inverse, W! = W—l. The inversion

ylelds
gs =Wt€ts + ATt + C%¢

| (22)

C'b = W'C"t +Bl§l + '_Dtc
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with

w1a

At = y1c, ¢r

W= Wt (23)
18

Bt = -w—lp, pt

i

The conditions sought will now be obtained. by replacing all quantities
in equations (17) and (19) by the corresponding primed quantities.
This leads to

|
(@)

Dtg — C't + DIC! — C'D? = (24)

{
O

B'g — A'y + D'A! — C'B! = (25)

and the équation satisfied Dy (' is, corresponding to equation (21),

(;W‘t + B + D'w')gts + (w'.s — A' - c'w')g't =0 (26)

The final result obtained may be stated as follows: If all the differ—
ential equations (17), (19), (24), and (25) in A, B, C, D, and W are
satisfied, the Baecklund transformation, equations (20), transforms
system (21) into system (26). ‘

. If the system of equations comnsisting of equations (17), (19),
(24), and (25) is written in scalar form, the numbsr of unknown scalar
functions exceeds the number of equations by four. It is therefore to
be expected that, 1f four of the unknowns are arbitrarily chosen or,
more generally, four additional relations between the unknowns are
added to the system, there will still exist infinitely many solutions.
In particular, it is to be expected that the equation in € or ¢!
may arbitrarily be prescribed and still be transformable into infinitely
many other equations by sultable Baecklund transformations.

Consider the problem of finding all Bascklund transformations such
that a preassigned equation :

t's = Bi'g ' (27)
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imolies equation (26). (Naturally, at all points (s,t) where the
coefficients of equation (26) are not both singular, that is, do not
have venishing determinants, equations (26) and (27) express the seme
relation.) A comparison of equations (27) and (26) shows that then

Wi — A1 — Ot = (WY — B! — D'W')E (28)

This equation must be added to equations (17), (19), (24), ani (25).
The whole system of equations can be essentially simplified by the
following steps: If the sscond of equations (20) is maltiplied by H
from the left and then subtracted from the first, the relation

0 =W, — Mg, + (A—H)¢ + (C— mM)* (29)

is obtained. If the coefficients of equation (26) are not both singular,
equation (29) will hold for any { and {' connected by the Baecklund
transformation, equations (20). An arbitrary constant can be chosen

for ¢, and for a given pqint (s,t) a corresponding value of {' can
be preassigned. A substitution into equation (29) then shows that

A=HB and C = HD (30)

In the degenerate case where the coefficients of equation (26) are
singular, equations (30) will be assumed to be true too. System (29)
becomss now

Lo = WHLEWE (31)

Thus, relations (30) and (28) are obtained and are to be added to
equations (17), (19), (24), and (25).

It will now be shown that equations (24) and (25) are already
consequences of equations (17), (19), (28), and (30). Indeed, equa-
tions (23) imply that

D'y = -W'B — W'Bg, C'y = —W'tA — WA
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A substitution into the left side L of equation (24) leads to
L=D'g = C'y + D'C' — C*D*=':B + W'yh — Wi(Bg — Ay) + W'BW'A — W'AW'B
and by use of relation (19)

L= —W'SB + W'tA + W'(DA — CB) + W'BW'A — W'AW'B

= (W —Bt —pwr)a — (Wrg — &1 — CTW)B

But this expression is zero on account of equation (28) and the first
of equations (30). In a similar way it can be verified that equa—
tion (25) is also a consequence of equations (1T7), (19), (28), and (30).

It is easy to eliminate the primed quantities from equation (28)
by direct substitution or, more simoly, by observing that the new equa—
tion may be obtained from equation (28) by dropping the primes from the
latter and replacing H by W—1lHW which corresponds to an interchange
of the roles of { and ('. This leads to

Wo — A= OW = (Wy — B — DW)W-1mW (28a)
\

Equations (30) allow the elimination of A and C from equations (17),
(19), and (28a). If this is done the following final system for B, D,
and W 1is obtained:

.
Ds—(ED),G-l-DHD—BD

I
(@)

By — (EB), + DEB — HDB

0 [ (32)

We — HB — EDW = (Wy — B — DH)WLmw

v

If equations (32) are satisfied, the Baecklund transformation described by
equations (20), wrbh A apnd C defined by eq_uatlon (30), transforms the
equation {, =W ngt into the equation (', = H{',.
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Some general remarks will now be made about the nature of equa—
tions (32): The first equation contains only the unknown D, the
second contains the unknown B 1in addition to D, and finally the
third contains all three unknowns D, B, and W. If ths equations
are solved successively, one of ths unknown matrices has to be deter—
mined at every step. Since the whole system of equations (32) is of
the Cauchy—Xowalewski type and of first order, the general solution
. will depend on 12 arbitrary functions of 1 variable which arise from
the initial conditions. This shows that, in general, each of a mani-
fold of systems of equations depending on 12 arbitrary functions of
1 variable can be transformed into a given system.

A second remark refers to the possibility of generalizing ths
transformations thus far considered. Transformations (20) do not form
a group. This means that, if two such transformations are composed,
the resulting transformation will in general not be contalned among
transformations (20), but it is exactly this fact that allows for the
construction of an extended class of.transformations which make possible
the linking of systems of differential equations not transformable into
each other before. By repeating the composition process several times,
the class of transformations can be widened more and more and an
increasing flexibility can then be achieved.

The differential equations connected with the study of a steady
Arrotational flow are of a special type. As a consequence, it is not
necessary to consider here the most general transformation of the form
of equations (20). The proper restrictions to be made on these trans—
formations will be discussed in the following section.

2. Specialized Systems of Differential Equations and
Specialized Baecklund Transformations

The systems of differential equations {5 = Hfy occurring in the
study of a steady irrotational flow have, after a suitable choice of
coordinates s and t in the hodograph plane, the following two
properties: (a) The elements in the principal diagonal of the
matrix H are both ldentically zero and (b) H depends only on one of
the variables s and +, say, s.

Property (a) expresses the fact that the equations can be derived
from a problem in the calculus of variations. :

Properties (a) and (b) suggest the consideration of only such of
transformations (20) which preserve both properties (a) and (b).
Property (b) is certainly not destroyed if the assumption is made that
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all coefficients in transformation (20) depend only on s. This leads
immediately to a remarkable simplification of system (32). Ths
resalting system of ordinary differential equations is

Dg + DEHD — HD® = O )

Bg + DHB — HDB = 0 - (33)

~

Wy — HB — HDW = —~(B + DW)W 'HW |

The subscript s indicates the ordinary derivative with respect to the
only independent variasble s.

Before conditions are introduced insuring preservation also of
property (a), some consequences will be drawn from system (33).

The following notation of matrix theory will freguently be used:
. 1 m%
(1) The trace T(M) of a matrix M=| * is defined as

m

ths sum of the elements lying in its principal diagonal, that is,

= mt 2
7 (M) wy + WS

Ths trace T 1is an additive function of M, that is, for any two
matrices M; and M,

(M + Mp) = T(M) + (M)
and the trace of a scalar multiple LM of M 1is
T(AM) = ar (M)

It is further easily verified that for a product of the matrices Ml
and Mp .

T (MiMp) = T(MoM;)
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or that

(MM — MoM;) = O

(2) The "adjoint" M* of a matrix M is defined as the matrix

2 1
* = o Th
1 1

e

Evidently MM* = M¥M = 5(M)I, where I represents the unit matrix,

1 0
I =

0 1
and

ml m%

su) =| *
m2 m2
1 2
Mx* 1

is the determinant of M. If B(M) # O, 500 = M.

The simple facts of matrix theory reviewed under definitions (1)
and (2) will now be used to draw consequences from equations (33). If
the trace is taken of the left side of the first of equations (33), the
following equation is obtained:

7(Dg) = 7(ED® — DHD) =.T(ED'D — D-HD) = O

or

T(Dg) = [T(D)]s =0

This shows that the trace of D 1is constant.
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If the same equation is multiplied, from the right side, by D*¥
and the trace is then taken, the resulting equation is

T.(DgD*) = 5(£D)T(HD —DH) =0

However, an easy computation shows that

_ (1 2 1) .2 2 1 2 1 _
T(DSD*) = (81>s 82 - @2)3 81 - (51>s 62 + (82)5 81 = [S(D)]S
This leads to the fact that the determinant of D is also constant.

In a similar way, multiplying the second of equations (33) by B*
and the third by W* from the right and computing the trace afterward
lead, as the reader will easily verify, to the further result that
the determinants of B and W are constant too.

If a solution of system (33) is known, a four—parameter family of
new solutions may be obtained by leaving D unchanged but replacing B
and W Dy new matrices B =BK and W = WK with a common constant
right-hand matrix factor K, whose determinant &(K) # 0. Indeed, if
substitution of B and W in the second and third of equations (33)
is made, the matrix X appears in each term as a common right—hand
factor, and the equations obtained are therefore consequences of
equations (33).

A final remark concerns some particular solutions of equations (33):
If D represents a solution of the first of equations (33)
and 3(D) # 0, then any scalar multiples of D

B=AD and W =D

with constant factors A\ and u, % 0, satisfy the second and third
of equations (33). The proof is immedig.tely obtained by substitution.

The generél solution of system (33) depends on 12 arbitrary
constants, but only those solutions which guarantee the preservation
of property (a) are of interest. By the addition of this new postulate,
a subclass of the solutions of system (33) will be obtained. Without
trying to characterize the latter completely, a six—parameter family
of solutions of this subclass will be constructed by a specialization
of the form of the matrices involved.

e e i e e T T e v~ - - —— - e
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A simple method of assuring the preservation of property (a) is
to assume W to be of the form

1
a)l 0
W= (34)
0 a)2
2

Indeed, the matrix H of the primed equation ('; = Ht'; 1s supposed
to have the form

B} 1
(o] 'r]2
H=
2
'ﬂl 0

and the matrix WLEW of the transformed equation {_ = W HW(, 1is
then

which shows that property (a) is preserved.

In order to obtain solutions of system (33) with the matrix W - of
the form of equation (34), an adjustment of the forms of D and B

must be made by setting

o 5 o B
82 0 Bi 0

Tt will now be proved that system (33) has solutions of the form of
equations (34) and (35) with arbitrarily preassigned initial values of
1 2 1 2 1

the six available matrix elements &, &, B, B., w , and a)2.
2 1 2 1 2
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If the same equation is multiplied, from the right side, by D*
and the trace is then taken, the resulting equation is

T(DgD*) = 8(D)T(HD — DH) = 0

However, an easy computation shows that

= (1 2 1 2 2) - <1 2 1 _
T(DgD¥) = <Sl>s 85 — (52>s 8] — <81>s 85 + (62>S 87 = [8(D)]s
This leads to the fact that the determinant of D _is also constant.

In a-similar way, multiplying the second of equations (33) by B*
and the third by W* from the right and computing the trace afterward
lead, as the reader will easily verify, to the further result that -
the determinants of B and W are constant too.

If a solution of system (33) is known, a four—parameter family of
new solutions may be obtained by leaving D unchanged but replacing B
and W Dby new matrices B =BK and W = WK with a common constant
right—hand matrix factor _K, whose determinent &(K) # 0. Indeed, if
substitution of B and W in the second and third of equations (33)
is made, the matrix K appears in each term as a common right—hand
factor, and the equations obtained are therefore consequences of

equations (33).

A final remark concerns some particular solutions of equations (33):
If D represents a solution of the first of equations (33)
and &(D) # 0, then any scalar miltiples of D

B=AD and W=D )

with constant factors A and p, p % O, satisfy the second and third
of equations (33). The proof is immediately obtained by substitution.

The general solution of system (33) depends on 12 arbitrary
constants, but only those solutions which guarantee the preservation
of property (a) are of interest. By the addition of this new postulate,
a subclass of the solutions of system (33) will be obtained. Without
trying to characterize the latter completely, a six—perameter family
of solutions of this subclass will be constructed by a specialization
of the form of the matrices involved.




20 NACA TN 2065

A simple method of assuring the preservation of property (a) is
to assume W +to be of the form

1
a)l 0
W= (3%4)
(0] u)2
2

Indeed, the matrix H of the primed equation ('; = H{'y 1s supposed
to have the form

1
0 7)2
H =
2
Oy 0

then

which shows that property (a) is preserved.

In order to obtain solutions of system (33) with the matrix W of
the form of equation (34), an adjustment of the forms of D and B
must be made by setting

o1 - 1
D = and B, (35)
52 0 , B] O

It will now be proved that system (33) has solutions of the form of »
equations (34) and (35) with arbitrarily preassigned initial values of
1 2 1 2 1 2

the six available matrix elements B o) w and .
5’ 1’ 32: Bl’ 1? (D2
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In order to simplify the necessary computations the following
abbreviations will be used:

o
=
|

(o]
()

»
—~
Il
ke
)
(]
=
-
(-

2 = 2 Mo =1 =0
2 2 2 2 2 2 2 2 (35a)
5, =90 Py =8 My = @ =
The first equation of system (33) will now be written in an
explicit form. A simple computation shows that
2
0 n2(s1) - /o niels?
DHD = ' HD2 =
2
1-(s2) 0 1%s%% o
and, since
0 (s1)
D =
s
(82), 0
the first of equations (33) is equivalent to the péir of scalar
equations
1 2(_1\2
(5 )S + 1 (8 ) - =0
(36)
(62)3 + T]1(62>2 ~ 42%2 = o

The integration of the system of differential equations, equa~—
tions (36), can be reduced to the integration of only one equation with
one unknown function. As was observed before, the determinant of D,
given here by B(D) = -5 152, is constant. This ca.n be verified again
by mltiplying the first of equations (36) by 82 and the second by 51
and adding the resulting equations. This leads to (8 82) O Wthh
shows the constancy of &(D) = —»1s2, If the abbrev1at10n —6 8
is used, the first equation of system (36) becomes
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(ﬁ'l)s + n2(81>2 +ant =0 (37)

This is a differential equation of first order In 51 alone and is of
the Riccati type. If a # 0, the second of equations (36) is automati-—

cally satisfied by 82 = g‘il’-. If a=0 but 5 # 0, then &> = O.
A1l this can easily be verified bj the reader.
After equation (37) has been integrated, pl ana p2 are to be

determined from the second equation of system (33). A simple computa—
tion ylelds

0 (51112 _ ‘52111)Bl
DEB — HDB = :
2 -1 o

and the equations sought are therefore

(Bl)s + (81,]2 _ 52“1.)31 =0
(38)

L
(o]

(%), — (6% - o2nt)6® =

-

A comparison of system (38) with system (36)_ shows that in the
general case where a # 0, that is, wherg both 51 and 52 are not
zero, Pl and &l and also p° and 8 differ only by a constant
factor, that is,

1_ 51

. (cl, ca, Constant) (39)
2 22 :
B =086=¢c
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This is in agreement with a result obtained before, which showed that

in general, if (D) #£ O,
latter by a constant matrix from the right.
expressed in the form -

In the degenerate case where
but 82 % 0, equations (39) have to be replaced by

a =0 and, for example,

B 1is obtained from D by mltiplying the
Indeed,

system (39) can be

8t = 0

- (398)

-4

-

( (39b)

1
Bt =%
S}
(Cl, c2 constant)
62 = 5202
™ 5% and 52 are both zero, equations (39) are to be replaced
by
gl o ot
(cl, c® consta.nt)
pe = o?

as can be easily verified.
are known, the
gration.

Pl

J

The essential result is that, once the &'s.
B!'s can be written down immediately without any inte—
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The differential equations in ot and a)2 will now 'be\d.erived..

The terms occurring in the third of equations (33) are

0 2\/o e [nle2 0
HB = =
C o\ o /\e2 o o 2pL
0 7\ /o 51\ fwl 0 62wt 0
HDW = =
72 YA 0/\o o 0 1°8%a?

The differential equations are therefore given by

1
(wl)s — 12 — nle%l + pln2 & + 81920 = 0
(40)
2
(“’2)5 — 2L — n26%u? + g2nl &5 4 52nk? = 0
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As before, the system of equationg (40) can be reduced to one equation
of the Riccati type in al or o®. As was found before, the determi—

nant (W) = wle® is constant. This can be verified immediately by
multiplying the first of equations (40) by o® and the second by ot
and adding. The result is that of o + af ot = 0 or that (ol?)g = 0
which implies that ole® = b is a constant. Thé constant b is
different from zero because it was always assumed that W is non—

singular. Replacing o in the first of equations (40) by i& yields
( 1) ply? 1)2 1.2 _ 2 1)1 _ 1g2
)+ - w + 31" = 8%~ ) — 4B = 0 (41)

The second of equations (40) is an automatic consequence of equa—
tion (41). This may be verified by replacing «® by o = i& in the

second equation of system (40). ZEquation (41) is of the Riccati type
as was asserted before.

3. Equations Transformable into the Cauchy—Riemann
Equations or into Those Corresponding to the
Wave or Tricomi Equation

The essential obJective of this investigation is to find equations
of state, or the corresponding density—speed relations, which lead to
equations transformsble into a well-known canonical form. In view of
“this, it is of particular interest to study those equations which can
be transformed into the Cauchy-Riemann equations or into those corre—
sponding to the wave or Tricomi equation by transformations discussed
in the preceding section. Corresponding to each of these three
problems, the matrix H of eguation (27) becomes, respectively,

0 1 0 1 0 1

(¥2)
- —1 0 1 0 ~s 0

In each case it is required to solve equations (36), (38), and (40),
where the values of nl and n2 from the chosen canonical form have
been substituted. Since all of equations (36), (38), and (40) are of
the first order, their general solution depends on six arbitrary
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constants or, in other words, there exists a six—parameter family of
transformations leading to the given canonical form. It would be
incorrect to conclude, however, that the equatlons transformable into:
the given canonical form also constitute a six—parameter family.

Indeed it was already observed that if B- and W are multiplied by
the same constant matrix from the right, the resulting matrices together
with the unaltered D agein represent a solution of egquations (36),
(38), and (40). In particular this matrix factor may be chosen as a
constant scalar multiple ¢I of the unit matrix I. In this case,
however, (cW)—LlH(cW) = W1HW so that the corresponding differential
equations are identical. This shows that, in general, a five—parameter
family of equations can be transformed into a given canonical form.

Consider first the case where the given canonica.l form is that of

the Cauchy-Riemann %ua:bions ‘The values of n and n2 are
then nl =1 and = —1. Equations (37) and (41), to which eque—
tions (36) and (14-0) were previously reduced, now become

o (= L (43)

S (o) (s el -2 = 0 (1)

w
s b -

If the constant & is chosen different from zero, the substitutions
into equation (44) of 82 = gil’ gl = 5lcl, ana BS = 5°c° are to

be made with ¢l and c® as arbitrary constants. In the degenerate
case where a = 0, the substitutions to be performed are given by
equations (39a) or (39b) of the preceding section.

Equation (43) can be solved in terms of elementary functions, but
equation (4l4), it seems, cannot be solved in general in an elementary
way. In order to obtain solutions e@ressible in terms of elementary
functions, the restriction that ol = 8 = 0 will now be made.
According to equation (39b), Bl and B2 are then constants, and
equation (44t) reduces to

1—7\.l<¢nl -22 =0 (45) |

where 1 eand A2 are arbltrary constan't;,s.
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Equation (45) can be solved by elementary methods, and the reader
will easily verify the following statements: ‘

(a) 1£ a1 and 22 have different signs, the solutions of equa—
tion (45) have the form

ot = A coth a(s — sg) or al = A tanh a(s — sg) (46)

with arbltrary constants A, a, and Sqe

(v) 1 A and A2 have the same- sign, the solutions are of
the form

ol = A tan a(s — sg) (47)

with arbitrary constants A, a, and sg.

(c) 1P 32 or At is zero, the solutions have the form

ot = 2 or at =oas + B (48)

as + B

with constant values o and B.

The computation of the differential equations g = —lHWQt which
are transformable into the Cauchy-Riemann differential equations follows
immediately. A simple computation shows that

1 1 w2
- 0 0] 1\ /o 0 0 =
o[t ol
W HW = =
0 A AT 2\ o
I . @
and the equations therefore always have the form
s = Oy,
L P
<‘D “ol) [ (49)
~_1
Mg = —agt
J

et e e e e ek e e ey — . - . i e = - ————
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Since wlw® = b is a constant, the function (s) in system (49)
takes on one of the following forms:

-~

o=C ta.nhzcr,(s —8,) or .®=C cothu(s — sg)

C 'baneot.(s - Sg)

g
i

3 (50)

:t(or.s+;3)2 or a)=‘_*'.z——l—g)—§
as +

e
I

4

where C in the first two of equations (50) ‘is also an arbitrary
constent. Each formula of system (50) gives a three— or two—
parameter family of differential equations of the form of equa—
tions (49) which can be transformed into the Cauchy—Riemannn
differential equations.

Similar considerations lead to differential equations which can be
transformed into ‘those connected with the wave equation
(vwhere 'ql = 712 = 1). Since these equations can be computed in a

menner completely analogous to the preceding computation, only the
final result will be stated:

A1l equations of the form

£s = WNg
(51)
1
1s = 58

with an o again represented by one of the functions given by equa—

tions (50), can be transformed into equations connected with the wave
equation.

The study of equations transformable into a form corresponding to
the Tricomi equation (where 7 = 1, n2 = —s) is of particular interest
_since it can be utilized in the investigation of transonic flows. As
in the previous discussion, only the case 81 =82 = 0 will be consid—
ered in more detail. Equation (41) here takes on the following form:

L CO R T ' (52)

1_ Bt 2 _ 2)
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where Al and A2 are arbitrary constants. It seems impossible to
express the solutions of equation (52) in terms of elementary functions
except when Al =0 or A2 = 0.

If Al = 0, the solutions of equation (52) are given by

o' =as +p ‘ . (53)

where o and B are arbitrary constants.

If xe = 0 the solutions are given by

ot = —t— (54)
as” + B

where o and B are arbitrary constants.

The differential equation ¢ = xrlﬂwgt which 1s transformed into
equation (27) can here again be computed immediately, and it is seen
that . .

2
j—l o\fo A/t o 0 “ﬁ
W’_-le= . =
0 1 S 0 2 — w_l 0
o2 ® o2
The equations therefore have the form
§s = amy 2\ { '
w = =
o ( &> (55)
Mg —_('Egt

vhere @ may take on one of the forms

\]
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P S

C T s B2
" (56)

® = .’*:(cx52 + 8)2

with arbitrary constants o and B, according as ! is given by
expression (53) or (54). '

Equations of the form of equations (55) may be brought into an,
at times, more suitable form by & transformation of the independent
variables given by

s¥ = g¥(sg)

(57)

t* =1

This transformation will, if suitably chosen, simplify the first of
equations (55) to the form g _y =17 tx- The transformed equations are

o

ds
Eox = Orgxt*
( (58)

=S ds
[6V]

% Etx

ns*

The desired simplification is then achieved if ‘”:s‘s—* = 1, that is, if

% =/w(s) ds + Constant (59)

Equations (58) then take on the form

Esx = Nix
(60)
Ngx = -w*(s*)ﬁt* ’
where

()2
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If o 1s given by the first of equations (56), the resulting transfor—
mation is

s*=*—2 4 Constant (62)

B(as + B)

A further simple computation, which may be left to the reader, yields

a*(s*) = + BO(s* — s5o%)

* (63)
[l ¥ af(s* — sc*)]5

where sy * 1is an arbitrary constant. If ® is given by the second of

equations (56), the form obtained for w*(s*) becomes more complicated.

Since the latter form is not used in what follows, it will not be
written down.

}. Density-Speed Relations Leading to Systems of Differential

Equations Transformable into the Canonical Forms of

A

the Preceding Section

If the linearized equation of state p =—2 4 b 1is used as an

approximation to the actual equation of state, then the potential
function ¢ and the stream function ¥ satisfy the Cauchy—Riemann
differential equations in the hodograph plane, after suitable inde—
pendent variables have been chosen. The results of the preceding
sections supply a method for constructing more general equations of
state, or the corresponding relations between density p and speed g,
where a transition to a simple canonical form is made possible. This
is achieved by combining the transformations discussed in the preceding
sections with suitable simple coordinate transformations in the hodo—
graph plane.

If the polar coordinates g and 6 are used in the hodograph
plane, the equations in ¢ and V¥ are

3 2 j
> (64)
=3
Po = =¥y ]
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The local Mach number M and the density p are functions of ¢
alone and, according to Bernoulli's law,

2 a4
]
~ w--2% (65)
Equations (64) can be brought into a more sultable form by a
coordinate transformation of the form
s = s(q)
(66)
t =9

It may be noted here that the change in the sign of @ is introduced
only to eliminate the minus sign from the first of equations (64).

The following considerations will first be restricted to the sub-—
sonic region (M < 1), where equations (64) are of elliptic type. It is
well known that equations (64) can then be brought into the symmetric
form of equations (49) by a suitable transformation of the form of
equations (66). TIndeed after such a transformation, equations (64)
become

g. = 1M dq, ]
s pa ds t ]
> (67)
- _43ds
=5 aq's ]

Equations (67) are made symmetric by the choice of a transformation,
equations (66), which has the property that

2
1—-Mdg _gds (68)

This leads to the equation

2 2
(&) -1 (69)
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or 1 dp
s _Yi-12 _\**+5a3
q

70
% " (70)

which impllies +that
5 :
1M
s = j:;;::;q/+ Constant (71)

The function o(s) which appears in the now symretrized form of equa—
tions (67) \ ' ‘

g, = o(s)y,
o (12)
Vg =—(.u(s)¢t
1s given by
I N T
o(s) S > 20 (73)

where the‘right—hand term is to be thought of as expressed in terms
of s, as given by equation (71).

A combination of these results with those of the preceding section
allows the construction of such density—-speed relations which lead to
equations transformable into the Cauchy-Riemann equations. Each formuila
in system (50) represents a three—parameter family of functions w(s)
for which equations (49) can be transformed into the Cauchy-Riemann
equations. If the function w(s) of equation (73) is now identified
with a function of one of the families, equations (50), the equation
thus obtained together with equation (70) represents a system of
ordinary differentlial equations of first order in p and s as
functions of g. By solving this system, with unrestricted values of
the involved three parameters, a five—parameter family of pairs of
functions p = p(q) and s = s(q) 1is obtained. The functions p = p(q)
are then the ones sought. Since the addition of a constant to s(q)
(with p(q) 1left unchanged) leads again to a solution of the differ—
ential system, a four-parameter family of speed—density relations,
which leads to equations transformable into the Cauchy—Riemann equa—
tions, is thus obtained.
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A constant function is included as a special case of the
functions (s) given by system (50). It is to be expected that the
functions (s) = Constant will lead to the density—speed relation
which corresponds to the linearized pressure~volume relation. This
will now be verified.

If, instead of g,
k = log q (74)

is introduced as the independent varisble and the constant c% is
called c, equation (73) can be written in the form

o .
dp _ (- _
= p<c2 l> (75)

The integration of equation (75) by the method of separation of vari—
ables leads to the solution

bo ' ' (76)

Ry

where b is a constant, as the reader will easily verify.
A substitution of function (76) into Bermoulli's equation finally
ylelds

- 2 .
= ()7 | Gonstant (77)

which is the linearized pressure—volume relation.

For a general function o(s) the integration of the system
consisting of equations (70) and (73) can, by the elimination of p,
be reduced to an integration of a differential equation of second order

in s(q) alone. Indeed, equation (73) shows that
ds
K
p =4 (78)
w(s)

which, when substituted into equation (70), leads to

dn2 - (& ) 57 ds(ds> T (79)
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after a simple computation. If any solution of equation (79) is substi—-
tuted into equation (78), a desired function p = p(q) is obtained.

Equation (79) becomes essentially simpler if the roles of the inde—
pendent variable Kk and the dependent variasble s are interchanged.
If the abbreviation -

T == (80)

is introduced into equation (79), a simple computation yields

o _,2 _dlgo logm‘r.—l (81)
ds . ds .

Any solution of the Riccati type equation, equation (81), gives a
possible function k = k(s) when integrated.

The function w corresponding to the real equation of state has
a special analytic character, which is useful to know in the discussion
of approximating functions of . The pressure—density relation of gas
dynamics, upon which w(s) depends, is of the form p = ap? + b,
where a, b, and y are constants and y 2 1. If dimensionless
variables are introduced such that the density and velocity of sound
are both 1 at q = 0, the following formulas are obtained:

1
o= (=252 4 (82)
92 :
| p=c 2  (y=1) (83)
and »
W2 - — s 32_ - (84)
N

In addition, the function ® is given by

+ 1 2

o = T (r #1) (85)

— 2( y—
<1_7212> 7=1)
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and qg
o=V1-¢e? (r =1)

These formmlas show that all three functions p, M2, and o are
analytic functions of q_2 and can be represented by power series in qe
which converge in the whole subsonic region q2 < ;_E-T In particular,

the power series for o begins with the terms

+1
a)=l—-z-§——ql"+... (86)

Formuila (71l) shows further that if ¢ is defined as .
g = 82s (87)

then the latter function can also be represented by & power series
in q2. If the constant of integration in equation (71) is suitably
chosen, the power series for o Dbegins with the terms

L
a=@-%+.u . (88)

From a combination of equations (86) and (88), it follows that o can
be represented by a power series in ¢ starting with the terms

m=1~1%i£+... ’ (89)

The question of how far the function w(s) can be approximated by
a function of the family, equations (50), can now be discussed. If the
approximation is desired for a range of q starting with gq = O, the
best possible adjustment at g = O is achieved with a func—
tion wy =C tanh? a(s — sg), with the following choice of the constants:

Cc =21

a =2

> - (99)
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This shows that

)
1—732102

® = 1 (91)
ryEt L o0
1+ % g

The speed—density relations which correspond to w = ®w; have now
to be studied. In order to find these relations, it is necessary that
the function w; be substituted for o in equation (81). If a solu—
tion of the resulting differential equation is integrated with respect
to s, a possible "s—k" relation is obtained. A desired speed—density
relation is then obtained by a subsequent substitution into

equation (78).

It is convenient here to use the quantity o = €28 of equa—
tion (87) as the independent variable instead of s. Equation (81),
in which ® has been replaced by @y , then takes on the form

7 + 1.02
ar 2 2
20 — = 1 + 5 T — 1 (92)
) 32

That particular solution Ty which allows for the best approxi—
mation to the "real" speed—density relation, equation (82) or (83),
at g =0 1is now to be determined from among the infinitely many solu—
tions of equation (92).

It can easily be deduced from equation (88) that the function T

which corresponds to the real equation of state has a power—series
expansion in o starting with the terms

T=14+Zg+ . . . (93)

It will be shown in the appendix that equation (92) has one and only
one analytic solution in the neighborhood of ¢ = 0 which satisfies
the initial conditions



38 ' NACA TN 2065

for 6 =0 (9k)

where Cq is an arbitrary.constant.

The particular solution of equation (92) corresponding to ey = %‘-

therefore gives the best possible adaptation to the real equation of

state at q = 0. The s—k relation is finally obtained by an inte—

gration of this T with respect to s. The constant of integration

has to be adjusted such that % = 1 since this is the case with
dg=/q=0 '

the real equation of state as shown by equation (88).

The discussed approximation method is not the only possible one.
One may, for instance, introduce the requirement that the approximating
function wj(s) coincide with the function w, which is deduced from
the real equation of state, at three preassigned points. Numerical
results of the mentioned approximations will be discussed at the end of

this section.

The foregoing investigation has so far been restricted to subsonic
flows, and will now be extended to thé transonic region.. The canonical
form, equations (49), must now be abandoned since it can arise only for
an elliptic—type system of differential equations. This form will be
replaced, as is usual for a mixed flow, by a new one for which the
second equation of system (67) becomes

. = Vg (95)

This is achieved by a transformation, equations (66), which satisfies
the condition that

ds _p 6
= =2 (96)

or
s = j% dq + Constant (97)

The first equation of system (67) tekes on the form

¢s = “’*(S)‘l’t (98)
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with

q
1+==—
—_ a
ax(s) = 2 peM? -—2 = (99)
p .

In the case where the speed—density relation, equation (82), is used,
then w*(s) becomes ‘

1-2r*1pe
2

w¥(s) = . (741 (100)

S

or

w*(s) = (l - q2>eq2 (y = 1) (100a)

Remark.— A comparison of equations (100) and (85) shows that in

the subsonic region and for equal values of q the function * is
the square of w. This relation could also have been obtained by a
consideration of invariants of the differential equations under coordi—-
nate transformations.

The following procedure is now parallel to that followed in the
subsonic region. It is desired to comstruct speed—density relations
which lead to equations transformeble into those connected with the
Tricomi equation. This is achieved by identifying the function w* of
equation (99) with a function of formula (63) in which s* is now
replaced by s. Equations (96) and (99) represent then a system of two
ordinary differential equations of first order in p and s as func—
tions of g or k = log q. Again this system can be reduced to a
differential equation of second order in s as a function of x by
substituting p = —d—i from equation (96) into equation (99). The result
is

d%s _ ds ds>3 _
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°This again is simplified by gﬁoosing s as the independent variable.
If the substitution of 7 = = is performed as before, equation (101)

reduces to

%§-='r2 — w*(s) k102)

1

Should T = %- be used as the dependent variable, then equation (102)
would reduce to

_2

=¥ —1 (102a)

&%

The question of choosing the most suitable approximation func-—
tion w¥*, call it w¥*;, from among the functions of formula (63), will
now be discussed. An approximation is desired in the neighborhood of

N Without loss of generality it. can be

the sonic speed qg = "
4
assumed that the value of s corresponding to this sonic speed is zero.
The constant s, in formula (63) mst then also be set equal to zero.

The best approximation of the function w*(s) of formula (100)

by o*;(s) will be achieved if the remaining two constants « and B
are so chosen that
ds /s=0 ds /s=0
’ (103)

(), - €3
2
ds s=0 @s s=0

By the use of formulas (100), (97), and (82), a simple computation
yields

J

A

(@i) - _e(u)%l
ds s=0 2
+ 1>7*1

2*
Eor) - er sz

s=0 5

- (104)
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A comparison with formula (63) written in the form

shows that a and b are
742 ]
y—1
=2_7_u)
a ( :
. (106)

1

ey 7 + l) 7—1
l0(27 + 5)(—75——

After the computation of cn*l(s) has been completed, equation (102)
must be solved. The initial condition to be satisfied is obtained from
the condition that the relation between s and q and the relation
obtained from the real equation of state must agree at the sonic

speed q = qg up to the second order.

Equation (97) shows that

1
€L
(1— —12)7_—1

(107)

2
I

o [+
it

2
and the initial condition for equation (102) is obtained by a substi-—

tution of 2 = ¢ 2 = 2 S This yields the condition that
Y +
1
1
T = (L;—J‘)y for s =0 (108)

By an integration of the corresponding solution of equation (102)
with respect to s, the function k = xk(s) is obtained. The constant
of integration must again be adjusted to the real equation of state.
This requires that

K = -32'- log for s =0 (109)

Y+ 1

4
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The previous considerations contain constructions of approximating
speed—density relations in the subsonic and transonic reglons leading
+0 simplified equations of motion. A similar procedure would lead to
gpproximation formulas in a pure supersonic region. Transformations
which lead to the canonical form connected with the wave equation would
then have to be used. Since the discussion in such a case would be '
absolutely parallel to the one for the subsonic region, it is omitted
here.

In order to have a picture of the approximations which can be
achieved, numerical computations have been made in the subsonic and
transonic cases. The results are given in tables 1 and 2 and illus—'
trated in figures 1 and 2, respectively.

Teble 1 contains the tabulation of four functions w, ), Wn,
and w,. The first one is the function given by formula (85)
with ; = 1.405. The variable

1 [+I
oy = %—(7 +\72 - })EV"‘l Ve (110)

is chosen as the independent varieble instead of o. The variable gy
is normalized by the chosen constant factor so that it ranges in the
total subsonic region from O to 1. The values of ® are taken from
reference 4. All the functions w;, wp, and w3 are approximating
functions of @ of the form of the first of equations (50) and all can
be written in the form

‘ l—GUlBa
» = ¢ ——————— (111)

l+ct.¢:f_.LB

The function oy is the approximating function given by formulae (91),
and it gives the best possible approximation to w at g = 0. The
functions w, and are interpolation functions of the form of
equation (111) deter;‘l?ned by the conditions

w=ay, for gy =O0(M=0), oy =0.63(M=0.4702), and oy = 0.80(M= 0.63k4k)

(112e)

@ =0, for o, =0(M=0), cl=0.63(M=0.14-702), and, crl=0.96(M= 0.8698)
(112b)
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In the range, for example, from 03 =0 to o7 = 0.80, which corre—

sponds to a range of M from O to 0.634k4, the deviation of from o
is never greater than one unit of the third decimal place, with the

exception of the last entry where the deviation becomes three units of
the third decimal place.

Table 2 contains the tabulation of the function w* given by
formula (100) which occurs in the discussion of the transonic region and
the approximation function w¥*; given by formula (105), for the
value 7 = 1l.5. The approximation of w* usually used is that given
by the linear function w¥*s(s) giving the tangent of the w*—curve at
the zero point which corresponds to the sonic speed. For comparison,
all three functions w¥, w*;, and w*, are represented in figure 2.
It is seen that down to s = —0.22, which corresponds to a Mach number
of sbout M = 0.70, w*, gives a far better approximation to w*
than w*,. Also in the supersonic region up to, for example, s = 0.11,
which corresponds to a Mach number M = 1.29, the function w¥*_ is
strongly superior to w%,. 1

CONCLUDING REMARKS

The present investigation contains the study of a class of trans—
formations of the Baecklund type which transform systems of partial
differential equations into each other where simple point transformetions
ordinarily fail. . Corresponding solutions of the two 'systems are derived
from each other by the solving of a system of ordinsry differential
equations, a process, which, both from a theoretical and practical point
of view, i1s essentially simpler than solving a system of partial differ—
ential equations. An application of this study to gas dynamics leads
to a five—parameter family of speed—density relations for which the
corresponding equations for the stream and potential functions can be
transformed into the Cauchy—Riemann equations or into those connected
with the wave or Tricomi equation.

The methods deveioped allow for a fer-reaching extension expléined
as follows.

The class of transformations studied does not form a group; that
is, a transformation obtained by a composition of two such transfor—
mations is in general not contained in the original class of transfor—
mations. This represents an advantage, since the process of composi—
tion can be repeated arbitrarily often, and the class of transformations
can be extended more and more. This iteration process allows the
construction of a family of speed—density relations, which contain
arbitrarily many parameters and which lead to equations transformable
into one of the three canonical forms used.
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Tt is of great theoretical and practical interest to determine all

systems of partial differential equations whose form can be brought
arbitrerily close to one of three canonical forms by such composite

transformations.

Syracuse University
Syracuse, N. Y., October 27, 1947
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APPENDIX
PROOFS OF THEOREMS

The theorem used in section 4 will be proved in the following
generalized form:

Theorem 1. Consider the differential equation

ar o .
20 3z =T+ k(o) - 1 o (A1)

where the coefficient k(o) is an analytic function of ¢ in the
neighborhood o = 0 and has a zero at o = Q0 of at least the

second order. The power—series expansion of k(o) is therefore
of the form

k(o) = 8202 + a3o3 + ... ‘ (a2)

If k(o) satisfies these conditions, then there exists a solution

of equation (Al), analytic about o = O, which satisfies the
initial conditions

= ar\  _
T =1, <d;>0_ cq | (A3)

where ¢y is arbitrary.

Proof.— The required solution must be expansible in a power series
of the form

T =1 + clo + 0202 + . . . ’ (Ah)
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By substituting series (Ak) into equation (Al) and comparing coeffi—
cients of equal powers on both sides of equation (Al), the relation

) n—1 n—1
2(n~1)ep =S cyop 4 + > e o +oay (A5)
i=1 - i=1

(@=2,3...)

is obtained, where a,; = O.

Equation (A5) represents a recurrence formula which allows for a
successive computation of all coefficients c¢; in series (Ak). It will
be proved now that series (Ak) has a positive radius of convergence.
Series (A2) has a majorant of the form

E(o’)=i—é—°i-;=§2_02+a_303+... (46)

having a radius of convergence which can be assumed arbitrarily close
to that of series (A2). .

The values of the coefficients in series (A46) are

g =al2(1=2,3,...), 7§ =0 (AT)

If in formula (A5) the a;'s are replaced by the a;*s and the
factor n — 1 on the left side is dropped, a modified recurrence
formula

n—l n—k
Ecn = - cicn—i_ +Zl a.icn_i + &, (n = 2’ 3, . . .) (A8)
1= 1=

is obtained, which again determines 6;1' uniquely once EJ'_ has been
chosen.

If a value for q is chosen such that

|°1] S o1 (49)
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then a compé.rison of formlas (A5) and (A8) shows immediately that
|en | <& h=1,2,...) (A10)
It is, however, easy to show that the series
Clo + To° + . . . (A11)

has a positive radius of convergence. Indeed just as the cpts, given by
recurrence formula (A5), are the coefficients of a solution to the
differential equation, equation (Al), equation (A8) expresses the
requirement that the ¢, 's are the coefficients of a generating
function

o0

(o) =) _ o (A12)

n=J1

which satisfies the algebraic relation

2?:?2+1—%2—(1+?) (A13)
or
(e -0 ()

and which vanishes for o = 0. This determines T +to be

: . 2
Fo1o_ A [1- ao° _ A (A15)
,2(1 1 - ac®

- ac?)

But function (Al5) can be expanded into a power series in ¢ with a
positive radius of convergence. This completes the proof of theorem 1.

S e e et i = e e g i e e R — ——
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It is of interest to know how far the solution (o) of equa—
tion (Al) satisfying initial conditions (A3) is represented by the
power series, series (A4). A definite answer can be given under the

restric'bive conditions

a, 20 nh=2,3...) (A16)

0 (A17)

1\

c1

It will be shown later that these conditions are fulfilled when equa—~

tion (81) con’calns an o corresponding to the real equation of state,
provided that vy = l, or when it contains an ® = wj, & function which
was used as an approximation to the former and given by equation (91).

The following theorem is given in answer to the foregoing question:

Theorem 2. If the restrictive conditions (A16) and (ALT) are
satisfied and one knows that the solution T exists in a range
0 £ 0 < g,, then the radius of convergence of series (a}) is at

least equal to 05.
Proof.— Now recurrence formula (AS) shows immediately that

C
n

RV

0 (n=1,2,3, . . .) (A18)

An immediate consequence of inequalities (A18) is that if 0, represents
the radius of convergence of series (Ak), all derivatives of 7(o) in
the interval 0 S o< o] &are non—negative. An analytic con'binuation
by power series shows f‘urther that this is true not only for 0< o< oy

but in the whole interval 0 S o < Oge

A theorem of S. Bernstein (reference 12) is now used. to complete
the proof. Bernstein's theorem states:

If a function T(¢) has derivatives of arbitrarily high
order and all are non-negative in the interval 0 S ¢ < Oy (the
function is then said to be absolutely monotonic in the interval)
then it is analytic there and can be represented by & power series

in ¢ whose radius of convergence is at least equal to Oy-
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In the special cases considered in section 4k, the value of c1
was equal to % Condition (Al7) is therefore satisfied. But condi—
tion (A16) is also fulfilled. This is expressed in

Theorem 3. Condition (A16) is satisfied both _
for k(s) =—% log w, where ® is represented by formula (85)

with 7 21 and for k(s) =—%S- log @; with ®; given by
formla (91).

Proof.— That the theorem is true for kl is immediately seen from

the expression for k; in equation (92). In order to verify it
for k(s), it must be shown that the function k and all its deriva—
tives with respect to o are non-negative.

Consider first k, itself:

2
. dlogw d log o d4q
k — j—p—
ds dg= ds (419)
According to equations (85) and (T71),
2
_d.loga)=7+l q’ (420)
2 N
- d -
: (l -7 2 lq2)<l - ; lLle)
2
ds

Functions (A20) and (A21) have power—series expansions in ¢° with non—
negative coefficients. This is immediately clear for function (420).
In order to prove it for function (A21), consider

e b e s e s s s e s % < ape e o
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Al the coefficients of series (A22) are certainly non-negative

since 7 2 1, and therefore those of the expansion of function (A21)

and those of equation (Al9) are also non-negative. Thus the function k
is non—negative.

It will now be shown that

die _ gk dg” 1 (423)
do dg_gds 20 -

is also non-negative. The first two Tactors of the right—hand member
of equation (A23) have power-series expansions in ¢< with non-negative

coefficients. It will now be shown that ;, which is obtained as &
function of q2 from equation (71) , has an expansion of the form

q2

a |-

= -}—<1 + 7lq2 + 7241lL + . . .) o (A2h)

all of whose coefficients 7, &re non-negative., It is sufficient to

prove that all the coefficients of the expansion of

non~positive with the exception of the first. Indeed,

l_z;lgz . e
____.___=1_Z(L_§__) ¢ =1-1
1_7;12 n=1

where all the coefficients of the expansion for U are non-negative.
Now '

evidently involves only non—pozitiye cosfficients in q2 with the
exception of the first term 1. By a multiplication of the series
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In the special cases considered in section 4, the value of cy
was equal to %. Condition (Al7) is therefore satisfied. But condi—
tion (A16) is also fulfilled. This is expressed in ’

Theorem 3. Condition (Al6) is satisfied both
for k(s) =-%§ log w, where " 1is represented by formula (85)
. d. N
with 9y 21 and for k;(s) =—=—log ) with ®, given by
formula (91).

Proof.— That the theorem is true for ky 1s immediately seen from

the expression for k; 1in equation (92). In order to verify it
for k(s), it must be shown that the function k and all its deriva—
tives with respect to ¢ are non-negative.

Consider first k itself:

2
d log w d log w dg
k =— = — Al
ds dq2 ds (a19)
According to equations (85) and (71),
2
_dlogw -2 +1 q (420)
2 L
d - ,
: (- 2529 - 1)
(421)

" Functions (A20) and (A21) have power—series expansions in g2 with non—
negative coefficients. This is immediately clear for function (A20).
In order to prove it for function (A21), consider

(422)
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All the coefficients of series (A22) are certainly non-—negative

since 7 = 1, and therefore those of the expansion of function (A21)

and those of equation (Al9) are also non-negative. Thus the function k
is non-negative.

Tt will now be shown that

dk dg°

do dq- ds 2

is also non—negative. The first two factors of the right—hand member
of equation (A23) have power—series expansions in q2 with non-—negative

coefficients. It will now be shown that J—‘—, vwhich is obtained as a
function of g2 from equation (7l), has an expansion of the form

a Ik

= %(l + 7lq_2 + 7'2(14 + . . ) o (a2k)

all of whose coefficients 7, are non-negative. ‘It is sufficient to

prove that all the coefficients of the expansion of

non—positive with the exception of the first. Indeed,

z+l;2
_.______=1_Z<2'2_> ¢ =1-T
y—12o n=1

-
2

where all the coefficients of the expansion for U are non—negative.
Now
7+
® 1
——={1-T=) (-1)“(2)!3“
) n=0 I

evidently involves only non—positive coefficients in q2 with the
exception of the first term 1. By a multiplication of the series
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expansions of the factors in the right—hand member of equations  (A23),

the result is obtained that —g—k& has an expansion in ¢2 with non—
negative coefficients and is therefore non-negative.

By a continuation of these considerations in the same manner it
can evidently be proved that all derivatives of Xk with respect to v
have power-series expansions in q2 with non—negative coefficients and
are thsrefore non-negative.
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TABLE 1.— VALUES OF w, w;, Wy, AND o

3
[u.) given by equation (85), where 1015 = o5, relationship between s and q given
. _ B 2
by equations (71) end (8Y), end 7 = 1.405. @, end w3 obtained from (:—L-—oflag)
1 + ao.
1

which is an approximation formmle of the first of equatlons (50). Constants a
and B evaluated for oy = 0.63 (Mach number, 0.4702) and oy = 0.80 (Mach

number, 0.6344) in ap and for o = 0.63 (Mach number, 0.4702) and o = 0.96
(Mach number, 0.8698) in m3.]

23

oy o ©3 ) w3
0.02 1.0000 1.0000 1.0000 1.0000
.16 1.0000

.18 -9999

.20 .9999

.22 .9998 1.0000

.24 9998 -9996 -9999

.26 -9997 -9996 -9999

.28 9996 -9996 9998

.30 -999% -9996 .9998 <9999
.32 9992 9992 9996 -9999
=34 -9990 .9992 9994 -9998
.36 9987 9988 .9992 .9996
-38 -998k -9988 -9990 -9996
-4o .9980 .9988 .9986 -999%
42 -9975 9980 9982 -9990
4k .9968 9976 . 9978 -9988
.46 .9961 .9968 .9972 .9982
48 -9953 9964 -996k -9976
.50 <99k .9956 -995L -9968
.52 -9933 .9948 .9942 9956
.54 -9920 -9940 -9930 -99hk
.56 -9905 .9932 991k 9926
58 .9888 9924 9894 9906
.60 .9868 .9912 .9872 .9878
.62 .98uT .9900 .9849 .9947
.64 .9818 .988% .9819 .9809
.66 .9791 .9872 -9785 <9761
.68 .9749 .9853 L9746 .9706
.70 -9709 .9837. .9702 -9639
T2 .9660 .9817 .9651. .9559
.Th .9602 -9799 -9596 . 9465
.76 -9535 9775 .9532 .9357
.18 .9455 .9752 .9k60 .9229
.80 9350 972k -9380 .9082
.82 .9238 .9696 - .9201 .8913
.8l 9113 -9667 .9193 .8720
.86 .8948 .9631 .9086 .8503
.88 .8740 -9596 .8966 .8257
.90 8492 .9561 .8836 .7987
.92 .8153 .9520 .8694 .T681
.94 -7720 -9¥T79 .8540 -7350
.96 L7037 .9436 .8372 .6984
.98 .5891 .9388 .8192 .6595
1.00 .0000 .9339 .7998 .6173
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TABLE 2.— VALUES OF w* GIVEN BY FORMULA (100)

AND o*; GIVEN BY FORMULA (105)

|10 formiia (100), s =j3 dq; 7 =1.5. In

formula (105), & anié b defermined by
equations (106) for 7y = l.Sj
S w* (D*l
—0.30 0.8832 0.5821
-.28 .8687 .5955
-.26 .8520 .6072
-2k .8329 .6165
—.22 .8108 L6227
—.20 . 7849 .6250
—-.18 .7548 .6223
-.16 . 7195 .6132
—. 1k 6779 .5962
-.12 .6283 .5690
—-.10 .5690 .5292
—.09 -5349 .5037
-~.08 4973 4738
—.07 4559 .4389
—-.06 hio1 .3986
—-05 -3597 .3522
—. 04 .3028 .2989
—.03 .2394 .2380
—.02 .1686 .1686
—-.01 .0895 . 0897
.00 .0000 . 0000
.01 —.1021 —.1016
.02 —.2183 ~.216}4
.03 -—.3503 —. 3464
.0k —.503k4 —.4930
.05 —.6789 —.6585
.06 —.8853 —.84k9
.07 —1.1270 —1.0552
.08 —1.4127 —1.2921
.09 -1.7536 —1.5588
.10 —2.1659 *—1.859k
.12 —3.2931 —2.5792
L1y —5.0852 -3.4935
.16 -8.1820 —. 6564
.18 —14.279k —6.1398
.20 —29.099% -8.0379

a7 e
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Figure 1.~ Results of computations in subsonic case,

2 2 2
1-0.0171301%\ 1 -0.055801°6\" 1-0.120;72
©p = Z)° %2~ 5.6/ “3T\ oo 73) "
1+ 0.017134; 1+0.05580,5- 1+0.12¢; 7"
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